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In the case of plane deformation, a11 conditions of plasticity are reduced to a single 
condition 0% - o2 = 2k, oT1 > a,. The dissipation function is then 

D = k 1/2eijeij = k I/Z (ex’ + ezlZ -+- %,,2)‘/” (ii) 
From (11) and (I’?) we obtain 

GX 
’ I= ke, VW%, S?/ ’ = ke, vrj?s, zxy = kexy fLv2 08) 

Substituting (18) into the equations of equilibrium and adding the equation expressing 

the incompressibility, i.e. cX + py = ~1, we obtain finally the equations which we 
intended to derive 

Other particular cases can be investigated in an analogous manner. 
The authors thank G, I. Bykovtsev for his valuable comments. 
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An approximate solution of problems of linear vis~l)elasticity is derived. The method 

is applicable to both ageing and nonageing materials, as well as in numerical solution 

of related problems of elasticity. An estimate is made of the accuracy of the derived 

solution. The problem of a ponderable viscoelastic hemisphere lying on a horizontal 

smooth base is given as an example. 
The solution of quasi-static problems of linear viscoelasticity for bodies with station- 

ary boundaries reduces to the interpretation of the operator functions of viscoelasticity 

[l-3]. In the case of an isotropic material the viscoelastic properties are defined by 
two operators: E and v. The dependence of the solution on operator E, which can be 
determined by uncomplicated experiments on creep or relaxationis simple. The depend- 

ence on operator v whose experimental deternlination is considerably more difficult is 

not negligible. 

If the dependence of a solution on the Poisson ratio is complex. it is possible to obtain 
it by method of approximations [3-S]. 

1, Let us consider an arbitrary parameter of the stress-strain state f (r. v, t) of stressed 
elastic body whose dependence on time is determined by the variation of boundary con- 
ditions with time. Solution of the related problem of viscc)elasticity is obtained by the 
substitution in the function f of operator v for the constant V. The exact determination 
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of f (r, v, t) is cumbersome, if at all possible. Let us construct an approximate solution. 
The solution of an elasticity problem is an analytic function of the complex variable 

v in the band (- 1 < Rev < l/,) [6. 77, hence, in the vicinity of any point ~0 E (--1, ‘/si 
it can be expressed in terms of the Taylor expansion 

f (r, vI tf = 5 ( v - V&l (r, vo. 0 (I.11 

I=0 

In the general case of ageing materials the operator Y is expressed by 

0 
It follows from (1.1) that the sofution of the viscoelasticity problem can be reduced 

to the determination of arbitrary powers of the integral operator. Since for large 1 the 
difficulties arising in this process are of the same order of magnitude as in the direct deter- 
mination of function f (r, y, t), we shall limit our analysis to the first m terms of the 

expansion (1.1). Let us estimate the accuracy of the derived approximate solution 

f, (r, Vt tf maxt 1 f (1‘. Y, t) - fm (r, Yt 0 d (0 6 t d T) d 

95 

air 

maxt 1 (v - ~0)’ q (r, ~0, t) ] d 2 II Y - 210 II1 lh tr, VOW t) II (1.“) 

z=m+1 I=n+l 

where the following notation is used for integral operators and functions [9]: 

t 

IIV - f~ II = maxt 
[ 

I VI (t) - v. I + 
s 

I K, (t, t) Id-c 1 
0 

II *i (r, VO* t! II = maxf 1 q (r, ~0, t) / (OdtGQ (1.3) 

For complex arguments v along the circumference 1 Y - v. 1 = r, lying entirely in 
the region analyticity of function f the Taylor’s coefficients al , expressed in terms of 

function f , are 
al (r, v0, t) = I 

s 

f @, v, t) 
2nir 

- jrn (r, v, t) dv 
(V - Yo) lfl 

fl>m) 

r 

This yields the estimate for Taylor’s coefficients q 

I al (r, y0, t) I < 
A (r, ~0, 4 

,t O>m) 

A (r, vo, t) = max, I I (r, v, t) - f, (r, % $1 i tv E T,) 

and then, for expansion (1.2) 

maxt 1 f (r, u, t) - fm @, Yt 4 < A# P7 %I p _ 11: _ vail 
y -rvo”)m’l 

(1.41 

M (r, vO) = maxi A (r, vo, 8 @,<tGV 

Thus the error of the approximate solution f,,% (r, vj t) can be readily estimated, if the 
solution f (r, Y, 1) for the elasticity problem has been calculated along the circumfer- 
ence Tr in the complex plane v. The accuracy of the estimate increases with increas- 
ing number of terms of Taylor’s expansion retained in the approximation. 

If the external stresses vary in proportion to a single parameter $ (t)or are a linear 
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combination of k one-parameter stresses with parameters I;:~ (t) (1 6: ,i .>; ki. the depend- 
ence of the solution of the viscoelasticity problem on parameter v is of the form 

i (P, v. t) = 2 l, (,1’. V! 11; (tJ 

i I 

and instead of analyzing function f (r, v, tj we analyze each operator /; (I*, v). Estimate 

(1.4) then becomes the estimate for the norm of the residue operator \, , (r, v) 

‘Dj (r, v) = jj (I’, v) -- $ ‘1; (r. v,) (v- v,y 
i 0 

Mi (I’, vg) = nlaxv i ‘pj (P. v) 1 cv E “& 

Similar estimates can be easily derived by expanding the solution in terms of a cer- 
tain analytic function of Poisson’s ratio. 

2. Let us consider, as an example, the problem of a ponderous hemisphere lying on a 
smooth base. The material of the hemisphere is assumed to be linearly viscoelastic and 
ageing. 

A simple substitution in the equations and boundary conditions will show that the 
expression tr, (I,, t) -= yft’E-‘lc,,‘- (r, V) 0 (t) 

is the solution of the problem of viscoelasticity, if ~;HZE-‘~~l~~ (r, v) is the solution of 

the~related elasticity problem. Here y is the specific gravity of the material, 1~’ is the 

hemisphere radius, E is Young’s operator, and 0 (t) is the Heaviside unit function. For 
ageing materials the Poisson operator v is in this case expressed in terms of bulk and 

shear operators I( and c; as follows: 

v = ‘I? (3K - :A(;\ (Sh: (;,-I 

Let us estimate the dimensionless displacement II_” if. v,# TV (t). According to (1.5) 
we have 

Thus for estimating the accuracy of the approximate solution uclo (r, vO) it is suffici- 
ent to construct the solution of the elasticity problem t(;1o (r, v) for v along the com- 
plex circumference rr 

which is not difficult when the solution of the elasticity problem is given by an analytic 
expression and, also, when it is to be determined numerically. 

Let us, for example, estimate the displacement of the hemisphere top .1 . For v,=O. 25 
we have [8] 

Values of Reu’ (A, l;)and Inr u0 (A, Y) calculated by the same numerical method for 

certain values of v (in degrees) along the circumference Pr (r = 0.25) are tabulated 
below 
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cp=o 18 36 54 72 90 
- Re u” = 0.439 0.439 0.437 0.435 0.431 0.427 
- Imu’= 0 0.0037 0.0073 0.0104 0.0126 0.0135 

T = 108 
- Rc u” = 0.423 
- Im u” = 0.0131 

In this case the parameter M (A) 

126 144 162 180 
0.419 0.416 0.414 0.413 

0.0112 0.0082 0.0043 0 

is equal 0.014. The deviation of the dimensionless 
values of the viscoelastic u” (A, V) 6 (t) from the elastic displacement U’ (A, v”) is 
estimated as follows : 

maxt I ue 6% v) 0 0) - lb0 (4 vo) I < 
M (-4) II v - yo II 

r _ ,, y _ v. ,, < 

0.0141jv -voII 
G 0.25 - I/v - Ydl = 6 (‘4 I II v - vo II) (0 < t < T) (2.1) 

This estimate makes it possible to evaluate the dimensionless displacement as a func- 
tion of time without knowning the specific form of operator v. 

Values of 6 for several A = 11 Y - v. 11 are given below. 

A = 0.05 0.10 0.15 0.20 
6 = 0.0035 0.0093 0.021 0.056 

Let us estimate the actual displacements 

U, (r, 7’) = ~R2E-1u,o (r, v) 0 (t) 

Using the integral form of the operator T 

E-9 (4 = m cp (T) + ( K (T, t) ‘P 0) dt 
0 b 

and estimate (2. l), we obtain 

1 ua (r, T) - 7 IPE-‘u,~ (r, VO) 0 (2’) 1 = ‘rH* ( E-l [ua” (r, v) - uclo (r, vo)] 8 (7’) I < (2.2) 

d +rW (T) 6 (r, T) 
T 

9 (T) = & + \ I K (Tt t) I dt 
5 

From the inequality in (2.2) directly follows the estimate of displacements 

e (T) uao (r, 2’0) - rl (T) 6 (r, T) G Y$.$? < E (zy 14~0 (r, vo) + II VI 6 (r, T) 

where E (T) is a function of creep. If R (T, t) > 0, which is true for at least nonageing 
materials, then rl (T) coincides with the function of creep e, (T), and the estimate of 
displacements derived in the approximate solution 

~R~E-‘u,~ (r, VP) 0 (T) 
reduces to the simpler form 

u, (r, T) 
e(T) [u,” (r, vo) - 6 (r, r)] “7 GE (T) t”,” (r* QJ + 6 (r* V] 

The authors thank L. S. Barkov and G. N. Aleksandrov for their help in numerical cal- 
culations. 
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If a self-similar solution is to be an asymptotic representation of a specific class of not 

self-similar motions, it must be stable with respect to small perturbations. Proof of the 

stability of self-similar solutions of the second kind of the Cauchy problem is given in 

linear approximation for the equation of elastic-plastic filtration mode derived in [l]. 

The solution of a similar axisymmetric problem is constructed. 

1, As shown in [l], the self-similar solution of the Cauchy problem for one-dimen- 

sional equation of elastic-plastic filtration 

is of the form I 
[,rn--i, (3c. t) -= -t-- / (4). 

Tc 
< -r 

-.... 
(,l?t)‘i_:l+lJ 

1’~ n,G 
;I.:) 

Here function f is expressed in terms of parabolic cylinder functions determined by 

the system of equations 

I)A+, (;,] / 1/z (I, ‘II (-- 1 ~~- ‘li+, ri>; ‘/&;,;Y’) m: i’. F a.,‘) ’ ‘II2 (1.3) 

with the exponent c( snd the value of $ ~- F1, such that ij~ j (3~ o when x ~7 rO (fj 
= z,, /.7 c ,1,-t _ 

I,et us consider the solution of a Cauchy problem with initial data defined at a certain 

instant t,, are defined by the weakly perturbed self-similar solution 


